Structure cristalline de Na₃H₅As₄O₁₄

AHMED DRISS ET TAHAR JOUINI

Département de Chimie, Faculté des Sciences, Campus Universitaire, 1060 Tunis, Tunisia

Received June 23, 1988; in revised form August 31, 1988

Na₃H₅As₄O₁₄ is orthorhombic, space group *Pnna*, with a = 10.038(1), b = 11.692(2), c = 9.533(1) Å, Z = 4, V = 1119(1) Å³, $d_x = 3.55$ and $d_m = 3.50$ g/cm³. The crystal structure has been determined by Patterson and Fourier methods; hydrogen atoms are located geometrically, and refined to a final *R* value of 0.048 ($R_w = 0.036$) for 963 independent reflections. It consists of (H₅As₄O₁₄)³⁻ cyclic ions linked together by hydrogen bonds and by Na⁺ cations. The title compound, which is a pentahydrogeno-arsenate, takes place between the two already known salts Ag₄H₄As₄O₁₄ and BaH₆As₄O₁₄ of the hypothetic H₈As₄O₁₄ acid. © 1989 Academic Press, Inc.

Introduction

Ce composé a été caractérisé par l'un d'entre-nous (1, 2). La formule proposée était alors Na₃H₅(As₂O₇)₂. Des monocristaux de cette phase sont obtenus à partir d'un mélange de H₅As₃O₁₀ et NaH₂AsO₄. H₂O dans le rapport 1/4,8, placé dans un tube scellé et porté à 150°C pendant 72 heures. Les cristaux lavés à l'eau à la température ambiante pour les débarrasser de leur solution mère se présentent en prismes légèrement inclinés. Ils sont facilement solubles dans l'eau bouillante. L'étude d'un cristal de ce sel par la méthode de Weissenberg montre qu'il est de symétrie orthorhombique. Les extinctions observées (0kl: k + l = 2n + 1, h0l: h + l = 2n + 1 ethk0: h = 2n + 1) conduisent sans ambiguité au groupe d'espace Pnna. L'affinement par moindres carrés des paramètres de maille effectué en utilisant les distances réticulaires observées du tableau I conduit aux valeurs: a = 10,040(3), b = 11,692(3) et c =0022-4596/89 \$3.00

9,535(3) Å. Ces dernières sont très proches de celles, rapportées dans le résumé, obtenues au moyen du diffractomètre automatique et utilisées pour la détermination de la structure.

Détermination et affinement de la structure

Un cristal de forme approximativement cubique d'arête mesurant environ 0,15 mm a servi à la collecte. 963 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre automatique à quatre cercles Philips PW100 utilisant la radiation $K\overline{\alpha}$ du molybdène ($\lambda = 0,7107$ Å). Chaque réflexion était mesurée en balayage de type $\omega - 2\theta$ d'amplitude 1,2 + 0,2 tg θ à une vitesse de 0,04°/s. Le fond continu était mesuré à chaque extrémité du domaine balayé durant un temps variant de 10 à 110 s selon l'intensité de la réflexion. La portion d'espace réciproque explorée s'étend de 3 à 30° (θ) ($0 \le h \le 14$, $0 \le k \le 16$, $0 \le l \le 13$). Deux

Copyright © 1989 by Academic Press, Inc. All rights of reproduction in any form reserved.

h	k	l	d_{cal} (Å)	d _{obs} (Å)	<i>I/I</i> 0	h	k	l	d _{cal} (Å)	$d_{\rm obs}$ (Å)	I/I_0
0	1	1	7,39	7,41	89	3	2	1	2,778	2,778	3
1	0	1	6,91	6,92	11	1	4	1	2,692	2,693	4
0	2	0	5,85	5,86	39	2	1	3	2,617	2,617	14
2	0	0	5,02	5,03	100	2	4	0	2,526	2,525	10
2	1	0	4,61	4,62	14	4	0	0	2,510	2,510	7
2	1	1	4,15	4,16	48	3	2	2	2,480	2,479	6
1	1	2	4,04	4,05	2	1	4	2	2,419	2,417	12
2	2	0	3,808	3,811	47	1	3	3	2,392	2,390	13
0	2	2	3,695	3,697	2	4	1	1	2,377	2,376	7
0	3	1	3,608	3,613	8	3	0	3	2,305	2,304	8
2	2	1	3,537	3,539	6	3	1	3	2,261	2,260	14
1	2	2	3,467	3,470	33	4	2	1	2,242	2 241	10
1	3	1	3,395	3,397	50	3	3	2	2,241	2,241	19
3	0	1	3,158	3,157	13	1	5	1	2,215	2,216	4
2	3	0	3,078	2 072	50	0	2	4	2,207	2,207	25
0	1	3	3,067	3,072	50	2	0	4	2,153	2,152	10
3	1	1	3,048	3,050	7	3	2	3	2,144	2,143	14
1	0	3	3,030	3,029	14	2	5	0	2,120	2 1 10	0
2	2	2	2,976	2,976	25	2	1	4	2,118	2,119	0
1	1	3	2,933	2 021	40	4	3	0	2,110	2,110	12
2	3	1	2,930	2,931	48	4	2	2	2,076	2,076	7
0	4	0	2,923	2,921	65						

TABLEAU I

DIFERACTOGRAMME DE POUDRE DE Na HASAOIA

réflexions de référence (-1 -3 3, -3 2 3)mesurées toutes les heures n'ont pas subi de variations significatives. Les corrections des facteurs de Lorentz et de polarisation ainsi qu'une correction d'absorption sphérique ($\mu R = 1,2$) ont été appliquées. L'examen de la fonction de Patterson a permi de localiser les atomes d'arsenic dans deux sites généraux 8(e). Une synthèse de Fourier différence fait apparaître tous les autres atomes à l'exception des hydrogènes; soit sept atomes d'oxygène et un atome de sodium dans des sites 8(e) et un atome de sodium en position spéciale 4(d). L'affinement des positions atomiques, des facteurs d'agitation thermique anisotrope et du coefficient d'extinction secondaire isotrope, en appliquant une correction de diffusion anomale aux atomes d'arsenic, converge vers $R = \Sigma |F_o - F_c| / \Sigma F_o = 0.048$ et $R_w = [\Sigma w (F_o - F_c)^2 / \Sigma w F_o^2]^{1/2} = 0.037.$

Une synthèse de Fourier différence effectuée à ce stade ne révèle aucun pic audessus du fond continu. La localisation des atomes d'hydrogène est réalisée par des considérations géométriques.

On recherche d'abord les atomes d'oxygène susceptibles d'être porteurs d'hydrogènes en ne considérant que ceux ne formant pas de pont entre deux atomes d'arsenic, soit O(6) et O(7) dans l'environnement de As(2) et O(1) et O(2) dans celui de As(1). La comparaison des distances As(2)-O(6) (1,638 Å) et As(2)-O(7) (1.686 Å) révèle un écart significatif permettant d'en déduire que O(7) seul est porteur d'hydrogène. En effet un atome d'oxygène lié une seule fois forme une liaison plus forte et donc plus courte que celui lié à deux atomes. La maille contenant vingt atomes d'hydrogène répartis au moins sur trois sites du groupe d'espace Pnna, les

deux atomes d'oxygéne O(1) et O(2) restant à considérer doivent être porteurs d'hydrogène. Ce fait est compatible avec les longueurs de liaisons As(1)-O(1) (1,769 Å) et As(1)–O(2) (1,772 Å), qui sont sensiblement égales entre elles et inférieures à celles relatives aux quatre autres atomes d'oxygène (moyenne: 1,854 Å) entourant As(1) et formant chacun deux liaisons fortes avec deux atomes d'arsenic. Il reste à déterminer les atomes d'oxygène accepteurs d'une liaison hydrogène. Ils doivent être situés à une distance inférieure à 3 Å de ceux porteurs d'hydrogène et former des angles As-O (porteur d'hydrogène)-O compris entre 100 et 150°. L'exploration des environnements de O(1), O(2) et O(7) à la recherche de tels atomes conduit à $O(3^{ix})$ dans le voisinage de O(2), à O(7^{viii}) dans celui de O(7) et à O(5ⁱⁱ) et O(6^x) dans celui de O(1). Dans ce dernier cas deux atomes satisfont aux conditions mais c'est O(6) que nous retenons comme accepteur d'une liaison hydrogène. En effet, la distance As(2)-O(6) (1,638 Å) est nettement superieure aux

TABLEAU II Coordonnées atomiques et $B_{éa}$

$\boldsymbol{B}_{kn} = \frac{4}{\Sigma} \sum_{i} \beta_{ii} a_{i} \cdot a_{i}$							
Atome	x	y	z	B _{éq} (Ų)			
As(1)	0,5343(1)	0,3914(1)	0,5455(1)	1,07(4)			
As(2)	0,5411(1)	0,4311(1)	0,2228(1)	1,16(4)			
Na(1)	0,2964(6)	14	34	2,1(3)			
Na(2)	0,6727(4)	0,1360(4)	0,6288(4)	1,8(2)			
O(1)	0,4515(7)	0,2592(6)	0,5685(7)	1,3(3)			
O(2)	0,6834(6)	0,3358(6)	0,6178(8)	1,4(3)			
O(3)	0,3933(6)	0,4651(5)	0,4665(7)	1,2(3)			
O(4)	0,5912(6)	0,3516(5)	0,3638(6)	1,1(3)			
O(5)	0,4710(6)	0,4277(5)	0,7259(6)	1,4(2)			
O(6)	0,4026(6)	0,3920(6)	0,1454(7)	1,8(3)			
O(7)	0,6720(6)	0,4198(6)	0,1129(7)	1,6(3)			
H(1)	0,42(1)	0,24(1)	0,50(1)	1(3) ^a			
H(2)	0,75(1)	0,37(1)	0,60(1)	0(3) ^a			
H(3) ^b	0,68(2)	0,50(2)	0,04(2)				

^a B_{isotrope}.

^b Position occupée à 50%.

distances As (coordinence 4)-O (non lié) rencontrées habituellement (1.61 Å) (3, 4). Cet allongement de la liaison As(2) - O(6) reflete la charge positive supplémentaire recue par O(6) de la part de l'hydrogène se trouvant à proximité. De plus, la distance $O(1)-O(6^{x})$ (2.743 Å) plus courte que celle correspondant à O(1)-O(5ⁱⁱ) (2,943 Å) est plus favorable pour une interaction oxvgène-hydrogène. Les positions des trois atomes d'hydrogène sont finalement précisées par afinement en prenant pour valeurs de départ des coordonnées atomiques celles d'un point situé sur le segment défini par les deux atomes d'oxygène liés par pont hydrogène, et distant de 1 Å de l'atome d'oxygène porteur. Les trois atomes d'hydrogène de l'unité asymétrique doivent nécessairement, pour réaliser un total de vingt atomes dans la maille, se répartir de manière à ce que deux d'entre eux occupent des positions générales le troisième se situant soit en position spéciale soit en position générale avec un taux d'occupation de 50%. C'est ce dernier cas qui a été retenu, après affinement, pour l'atome d'hydrogène H(3) bien qu'étant situé au voisinage d'un axe 2. L'introduction des atomes d'hydrogène dans l'affinement (coordonnées atomiques variables, ainsi que les coefficients d'agitation thermiques pour H(1) et H(2), celui de H(3) étant fixé égal à 3) ne modifie pas sensiblement les valeurs des facteurs de reliabilité qui deviennent: R =0,048 et $R_{\rm w} = 0,036$) (tableaus II et III).

Description de la structure

Dans cette structure se manifeste le cycle As_4O_{14} rencontré dans d'autres arséniates condensés. Il est centrosymétrique, formé de deux tétraèdres AsO_4 et de deux octaèdres AsO_6 alternés liés par des oxygènes communs. Les deux octaèdres partagent une arête (fig. 1 et 2).

Octaèdre $As(1)O_6$. $d(As(1)-O)_{moy} = 1,826$ Å. On observe deux liaisons courtes

TABLEAU III Facteurs d'agitation thermique anisotrope (×104)

Atome	β11	β ₂₂	β ₃₃	β_{12}	β13	β_{23}
As(1)	25(1)	17(1)	34(1)	0(1)	2(1)	2(1)
As(2)	28(1)	20(1)	34(1)	1(1)	2(1)	0(1)
Na(1)	44(6)	42(5)	61(8)	0	0	9(5)
Na(2)	51(4)	34(4)	44(5)	-1(3)	7(4)	-4(3)
O(1)	30(6)	24(5)	40(10)	-11(6)	-4(7)	5(5)
O(2)	6(6)	26(6)	71(9)	1(5)	-2(7)	4(6)
O(3)	22(6)	16(5)	46(8)	-4(5)	-4(6)	6(5)
O(4)	38(6)	23(5)	15(7)	11(5)	-9(6)	8(5)
O(5)	35(6)	20(4)	49(7)	5(6)	12(7)	9(5)
0(6)	41(7)	36(6)	52(9)	5(6)	-4(7)	- 16(6)
0(7)	27(6)	36(6)	47(8)	1(6)	9(7)	-2(6)

(1,769 et 1,772 Å) correspondant aux atomes d'oxygène O(1) et O(2) porteurs d'hydrogène. Parmi les quatre autres qui sont relatives à des oxygènes formant des ponts entre deux atomes d'arsenic, on note que les longueurs des liaisons axiales As(1)– O(3) (1,820 Å) et As(1)–O(3ⁱ) (1,832 Å) sont inférieures pour des raisons stériques à celles des liaisons équatoriales As(1)–O(4) (1,882 Å) et As(1)–O(5) (1,882 Å) (tableau IV).

Tétraèdre $As(2)O_4$. La moyenne des distances As(2)-O est 1,690 Å. As(2) forme

FIG. 1. Enchainement des cycles As_4O_{14} par ponts hydrogène parallèment à la direction *a*.

FIG. 2. Représentation shématique de l'empilement selon la direction a des cycles As_4O_{14} et de leur enchainement par ponts hydrogène parallèlement à (0-1). Les cations Na⁺ dont les polyèdres de coordination partagent des oxygènes ont été reliés.

une liaison forte (1,638 Å) avec l'atome d'oxygène O(6) non lié par ailleurs, une liaison moyenne (1,686 Å) avec l'atome O(7) porteur d'hydrogène et deux liaisons longues avec O(4) et O(5) liés chacun à deux atomes d'arsenic.

Environnement des ions sodium. Le cation Na⁺(1) est environné de huit atomes d'oxygène à des distances allant de 2,330 à 2,728 Å formant un prisme trigonal bicappé déformé peu habituel pour le cation Na⁺. En considérant une sphère de coordination de rayon 3 Å autour de Na⁺(2) on dénombre sept atomes d'oxygène aux sommets d'un polyèdre irrégulier comprenant cinq distances Na(2)–O courtes (2,336 à 2,564 Å) et deux longues (2,709 et 2,956 Å).

Cohésion de l'édifice cristallin. La cohésion entre les cycles $(H_5As_4O_{14})^{3-}$ est assurée d'une part par les cations Na⁺ d'autre part par les liaisons hydrogène. Les polyèdres Na(1)O₈ et Na(2)O₇ forment par mise en commun d'arêtes et de sommets (fig. 3)

DRISS ET JOUINI

TABLEAU IV

Octaèdre As(1)O ₆		Tétraèdre As(2)O4	
As(1) -O(1)	1,769(7)	As(2) –O(6)	1,638(7)
-O(2)	1,772(7)	-O(7)	1,686(6)
-O(3)	1,820(6)	-O(4)	1,710(6)
-O(3 ⁱ)	1,832(6)	$-O(5^{i})$	1,726(6)
O(4)	1,882(6)	O(6) -As(2) -O(7)	111,1(3)
-O(5)	1,882(6)	-O(4)	116,8(3)
O(1) -As(1) -O(2)	91,6(3)	-O(5 ⁱ)	109,6(3)
-O(3)	95,7(3)	O(7) -As(2) -O(4)	102,5(3)
-O(3 ⁱ)	174,0(3)	-O(5 ⁱ)	107,8(3)
-O(4)	92,3(3)	$O(4) -As(2) -O(5^{i})$	108,5(3)
-O(5)	85,8(3)		
O(2) -As(1) -O(3)	172,6(3)	Angles As-O-As	
-O(3 ⁱ)	91.4(3)	$As(1) = O(3) = As(1^{i})$	98.6(3)
-O(4)	90.6(3)	As(1) - O(4) - As(2)	120.0(3)
-O(5)	90.7(3)	$As(1) = O(5) = As(2^{i})$	119.9(3)
$O(3) - As(1) - O(3^{i})$	81.4(3)	(-) -(-)(-)	;- (-)
-O(4)	88.4(3)	Polvèdre Na(1)O.	
-0(5)	90.5(3)	Na(1) = O(1)	2 330(8)
$O(3^{i}) = As(1) = O(4)$	92.8(3)	=O(1 ⁱⁱ)	2,330(8)
-0(5)	89 1(5)		2,550(0)
O(4) = As(1) = O(5)	177.7(3)	-O(4 ^{iv})	2,014(8)
Polvèdre Na(2)O-	111,1(0)	-O(7 ⁱⁱⁱ)	2,014(8)
$Na(2) = O(6^{v})$	2 336(8)	$-\Omega(7^{iv})$	2,685(8)
-0(2)	2,350(0) 2 342(8)	-0(5)	2,005(0)
-O(7 ^{vi})	2,342(8)	O(5 ⁱⁱ)	2,728(7)
-O(2 ⁱⁱ)	2,394(0) 2 441(8)	Liaisons autour de H(3)
-O(5 ⁱⁱ)	2,441(0)	H(3) = O(7)	
-0(1)	2,301(8)	$H(3) \cdots O(7^{\text{viii}})$	1,2(2)
-O(6 ^{vii})	2,705(0)	$A_{s2} = O(7) = H(3)$	112(11)
0(0)	2,750(0)	$\Omega(7) = H(3) = \Omega(7^{\text{viii}})$	107(15)
		O(1) = H(3) = O(1)	107(15)
		Code de symétrie	
		i 1-x 1-	-v = 1-z
		ii $x \frac{1}{2}$	$-y = \frac{3}{2} - z$
Liaisons autour de H(1)		$x - \frac{1}{2}$	v = 1 - z
H(1) -O(1)	0.8(1)	$x - \frac{1}{2} - $	$v = \frac{1}{2}$
$H(1) \cdot \cdot \cdot O(6^x)$	2.1(1)	$v = \frac{1}{2} + x = \frac{1}{2} - \frac{1}{2}$	$v = \frac{1}{2} + z$
As(1) = O(1) = H(1)	111(9)	vi $x \frac{1}{2}$ -	$v = \frac{1}{2} - z$
$O(1)-H(1)\cdot \cdot \cdot O(6^{x})$	147(11)	vii $1 - x$ v	$-\frac{1}{2}$ $\frac{1}{2}$ $+$ 7
		viii $\frac{3}{7} - x = 1 - 1$	v 7
Liaisons autour de H(2))	$\frac{1}{12}$ ix $\frac{1}{2}$ + r	v 1-7
H(2) –O(2)	0.8(1)	$x x^{\frac{1}{2}}$	$v = \frac{1}{2}$
$H(2) \cdot \cdot \cdot O(3^{ix})$	1.9(1)	2	, <u> </u>
As(1) - O(2) - H(2)	114(8)		
$H(2)-O(2) \cdot \cdot \cdot O(3^{ix})$	170(11)		

Distances (Å) et angles (°) dans $Na_3H_5As_4O_{14}$

des couches $\langle \langle ondulées \rangle \rangle$ (fig. 2) dans le creux desquelles viennent se loger les piles de cycles $(H_5As_4O_{14})^{3-}$ parallèlement à la

direction *a*. Chaque pile se trouve ainsi reliée à ses quatre voisines par l'intermédiaire de liaisons électrostatiques avec les cations

FIG. 3. Projection sur (100) de l'association des polyèdres NaO₇ et NaO₈ dans un plan $\langle \langle \text{ondulé} \rangle \rangle$: renfermant les cations Na⁺ reliés par un trait continu dans la figure 2.

Na⁺, donnant lieu à un assemblage tridimensionnel.

Liaisons hydrogène. Les ponts hydrogène lient les cycles $(H_5As_4O_{14})^{3-}$ parallèlement aux directions a (fig. 1) et [0 | 1] (fig. 2) de manière à former des couches parallèles au plan (0 -1 1). Le cycle As_4O_{14} se manifeste en unités isolées non directement liées entre elles par ponts oxygène dans les structures de $Ag_4H_4As_4O_{14}$ (5) et $BaH_6As_4O_{14}$ (6). Le composé du titre qui est un pentahydrogéno-arséniate vient donc s'insérer entre les deux précédents et constitue un nouveau sel de l'acide hypothétique $H_8As_4O_{14}$. Dans d'autres arséniates condensés les cycles As_4O_{14} se lient par mise en commun d'atomes d'oxygènes pour former des enchaînements linéaires (7), plans (8) ou tridimensionnels (3).

Références

- 1. T. JOUINI, F. REMY, ET H. GUERIN, Bull. Soc. Chim. Fr. 1, 66–69 (1972).
- T. JOUINI ET H. GUERIN, Bull. Soc. Chim. Fr. 5-6, 973-975 (1975).
- 3. A. DRISS, T. JOUINI, ET M. OMEZZINE, Acta Crystallogr. Sect. C 44, 788-791 (1988).
- A. DRISS ET T. JOUINI, Acta Crystallogr. Sect. C 44, 791-794 (1988).
- A. BOUDJADA ET M. T. AVERBUCH-POUCHOT, J. Solid State Chem. 51, 76-82 (1984).
- 6. D. BLUM, A. DURIF, ET J. C. GUITEL, Acta Crystallogr. Sect. B 33, 3222–3224 (1977).
- A. DRISS, T. JOUINI, A. DURIF, ET M. T. AVERBUCH-POUCHOT, Acta Crystallogr. Sect. C 44, 1507-1510 (1988).
- H. D. NGUYEN ET T. JOUINI, Acta Crystallogr. Sect. B 34, 3727-3729 (1978).